

El final de las precauciones de contacto ¿moda pasajera o cambio de práctica?

Esther Calbo
Unidad Enfermedades Infecciosas

El final de las precauciones de contacto para la prevención de la transmisión de MOMR

¿moda pasajera o cambio de práctica?

Esther Calbo

Unidad Enfermedades Infecciosas

MICRORGANISMOS CON INTERÉS EPIDEMIOLÓGICO

Definición de precauciones de contacto y MOMR

Marco conceptual

Argumentos a favor

Argumentos en contra

Conclusiones

INTRODUCCIÓN Y DEFINICIONES

INTRODUCCIÓ

43 gioto Oscilia no solo-esta lleno de lenterias fascinantes, sino que sinceramente cambió no forma de ser el mundo. En el mujor libro que los leións en abos-STEVEN LENYE, blog de Freultamonico del New York Timore

- ➤ Simples o sencillos. Hay una receta, y en seguir las probabilidades de que salga todo bien son muy altas.
- ➤ Ejemplo: preparación de un pastel.
- ➤ Complicados. Se pueden subdividir en series de problemas simples, pero no hay una receta como tal. Una vez que sabe cómo hacerlo, se puede repetir el proceso y perfeccionarlo.
- ➤ Ejemplo: enviar un cohete a la luna.
- ➤ Complejos. Se parecen a criar a un niño. El desenlace es incierto, ya que cada niño es único, y el éxito con un no garantiza nada con el siguiente.
- ➤ Ejemplo: los microorganismos multiR

CP:TIME TO RETIRE LEGAL MANDATES

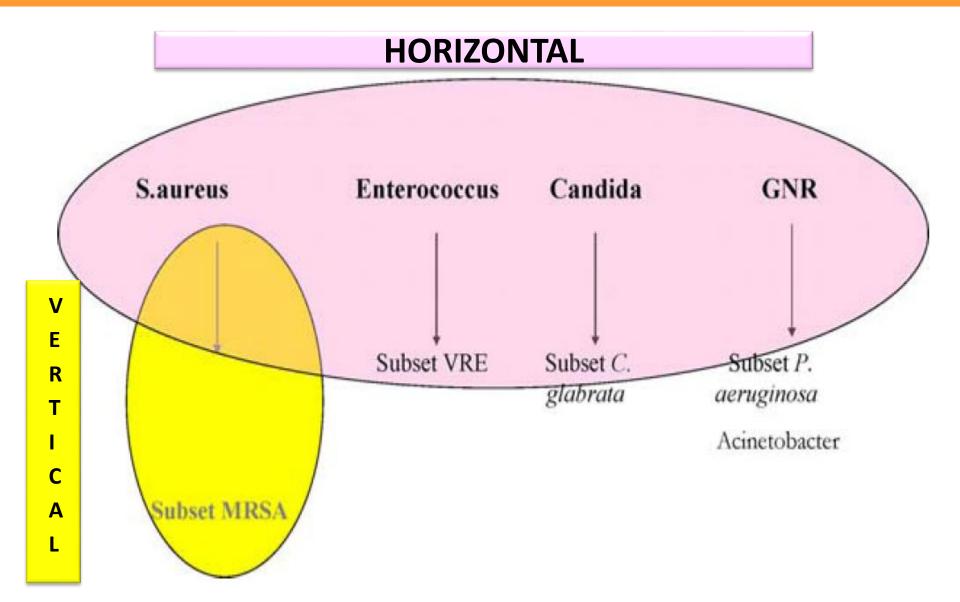
- El CDC recomendó las PC en los años 70 con basadas en opiniones de experto y con 7 categorías.
- En los 80 con la llegada del VIH se desarrollaron las PE
- En 2007 las guías se centran en PC dirigidas a MOMR
- La evidencia que apoya esta medida surge de brotes manejados con bundles

Morgan, Wenzel, Bearman JAMA 2017

PRECAUCIONES DE CONTACTO

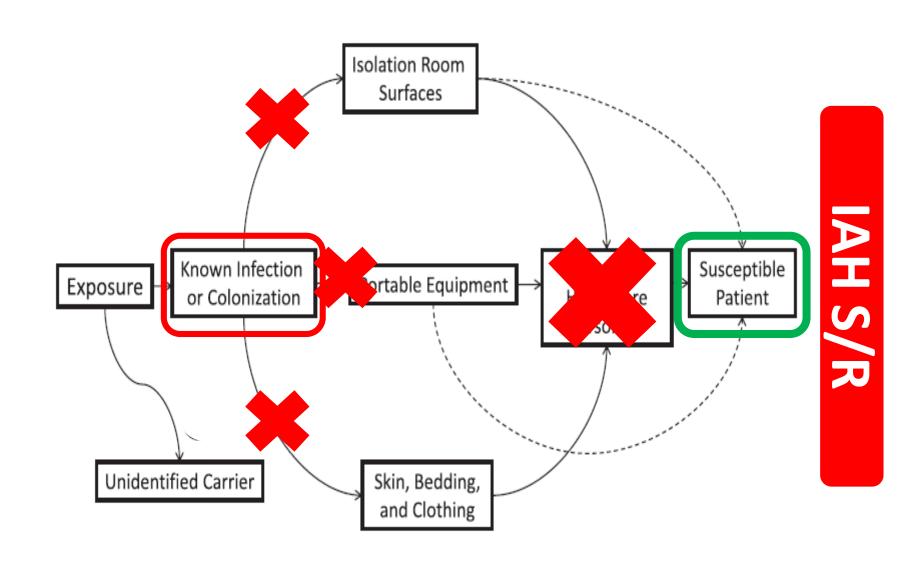
Aísla a un paciente de otro físicamente

BATA:

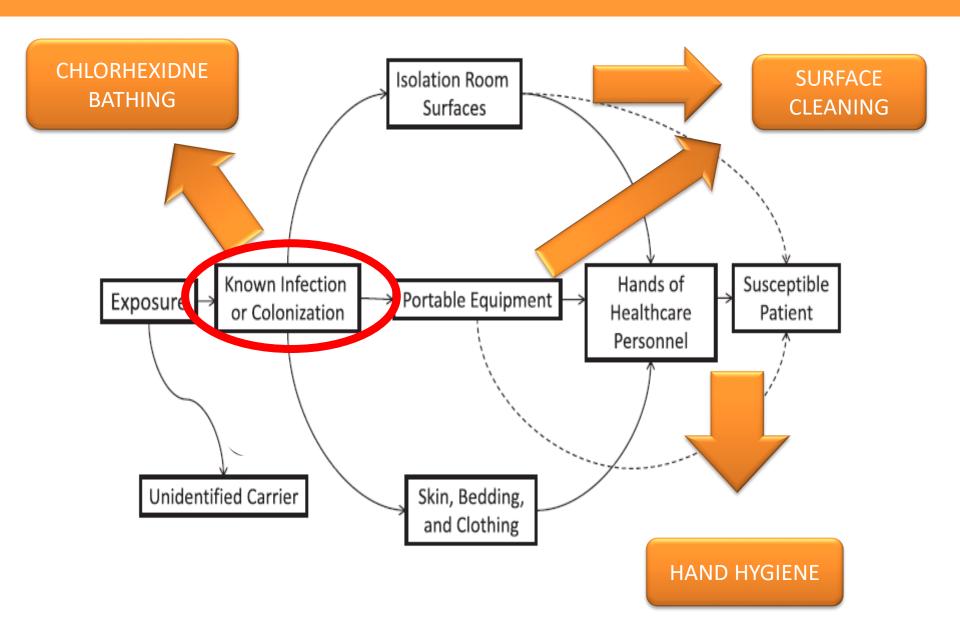

Protege al personal sanitario

GUANTES:

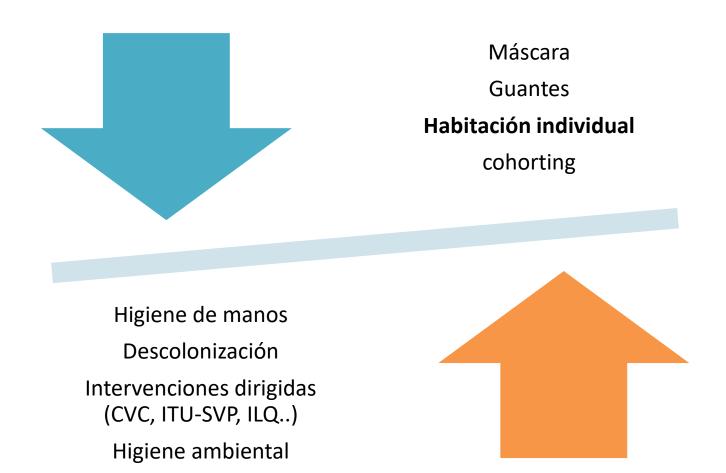
Protege al personal sanitario


MATERIAL DE USO EXCLUSIVO

ESTRATEGIAS HORIZONTALES O VERTICALES



Wenzel et al. Int J Infect Dis 2010


PRECAUCIONES DE CONTACTO

APROXIMACIÓN HORIZONTAL

DILEMA (en endemia)

LIMITACIONES DE LOS ESTUDIOS

- La mayor parte se han llevado a cabo en contexto de brotes
- Carecen de grupo control
- Unicéntricos con sesgos locales
- Las precauciones de contacto son valoradas en el contexto de paquetes de medidas
- Lugar de aislamiento
 - Planta de especializada
 - Cohorting con/sin personal propio
 - Planta general con habitación individual sin personal propio
- Definición de MOMR
- Duración de las PC heterogénea
- Intensidad de búsqueda de colonizados asintomáticos

MARCO CONCEPTUAL

ORIGINAL ARTICLE

Veterans Affairs Initiative to Prevent Methicillin-Resistant Staphylococcus aureus Infections

Rajiv Jain, M.D., Stephen M. Kralovic, M.D., M.P.H., Martin E. Evans, M.D., Meredith Ambrose, M.H.A., Loretta A. Simbartl, M.S., D. Scott Obrosky, M.S., Marta L. Render, M.D., Ron W. Freyberg, M.S., John A. Jernigan, M.D., Robert R. Muder, M.D., LaToya J. Miller, M.P.H., and Gary A. Roselle, M.D.

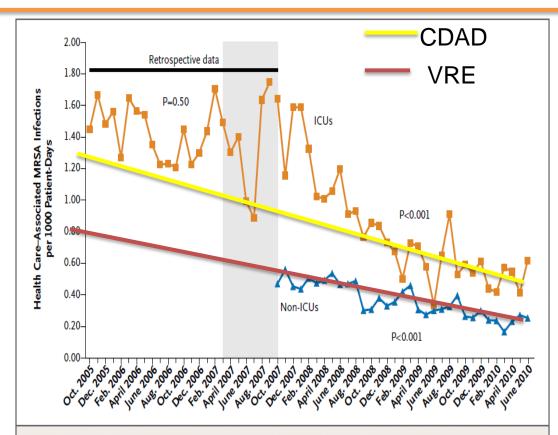


Figure 3. Nationwide Rates of Health Care—Associated Infections with Methicillin-Resistant Staphylococcus aureus (MRSA) in Veterans Affairs (VA) Facilities.

1,934,598 ingresos

- Cribaje universal nasal de SARM
- •13% de colonización basal al ingreso
- Precauciones de contacto para los colonizados o infectados por SARM (no hay datos de cumplimiento)
- Higiene de manos
- Cambio en la cultura institucional

Bundle (HM+PC+...) mejora todos los MOMR

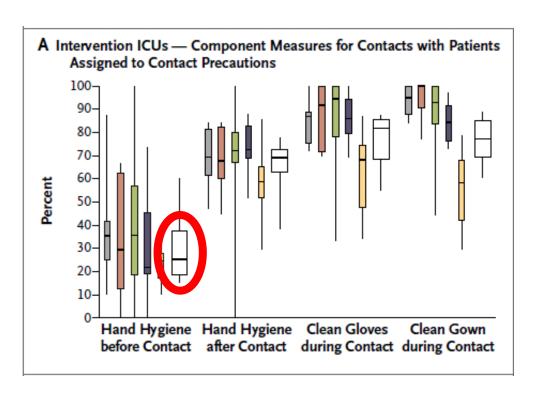
Jain et al. NEJM 2011

Universal Glove and Gown Use and Acquisition of Antibiotic resistant bacteria in the ICU: A Randomized Trial

Anthony D Harris, MD, MPH¹, Lisa Pineles, MA¹, Beverly Belton, RN, MSN², J. Kristie Johnson, PhD¹, Michelle Shardell, PhD¹, Mark Loeb, MD, MSc³, Robin Newhouse, RN, PhD⁴, Louise Dembry, MD, MS, MBA², Barbara Braun, PhD⁵, Eli N Perencevich, MD, MS⁶, Kendall K. Hall, MD, MS⁷, Daniel J Morgan, MD, MS^{1,8}, and the Benefits of Universal Glove and Gown (BUGG) investigators

Rates (per 1.000	patient-day	s at risk)	of acc	misition	of dru	g-resistant	bacteria
Trates	DEL 1.000	pattent-uay	2 01 1130/	OI GU	MI SILIVIA	or or or	E-1631319III	vac ici ia

		Intervention IC	Us		Control ICUs			
	#acquisitions	Patient-days at risk	Mean Rate (95% CI) ^a	#acquisitions	Patient-days at risk	Mean Rate (95% CI) ^a	Difference (95% CT) ^b	P-value ^C
Drug-Resistant I	Bacteria							
VRE or ME	RSA							
Study Period	577	32,693.0	16.91 (14.09 to 20.28)	517	31,765.0	16.29 (13.48 to 19.68)		
Baseline	178	8,684.0	21.35 (17.57 to 25.94)	176	9,804.5	19.02 (14.20 to 25.49)		
Change d			-4.47 (-9.34 to 0.45)			-2.74 (-6.98 to 1.51)	-1.71 (-6.15 to 2.73)	0.57
VRE								
Study Period	411	27,765.5	13.59 (10.26 to 17.99	337	28,340.5	11.88 (8.65 to 16.33)		
Baseline	108	7,691.5	15.18 10.50 to 21.95)	122	8,818.0	14.37 (10.31 to 20.02)		
Change ^d			-1.60 (-7.18 to 3.98)			-2.48 (-5.53 to 0.56)	0.89 (-4.27 to 6.04)	0.70
MRSA								
Study Period	199	30,454.5	6.00 (4.63 to 7.78)	191	30,024.0	5.94 (4.59 to 7.67)		
Baseline	77	7,841.0	10.03 (8.05 to 12.50)	59	9,182.0	6.98 (4.50 to 10.83)		
Change d			-4.03 (-6.50 to -1.56)			-1.04 (-3.37 to 1.28)	-2.98 (-5.58 to -0.38)	0.046


- Cluster-RCT
- Uso de guantes+bata universal
- 26.000 pacientes, 20 UIC
- Todas (control+intervenció) UCI bajaron las tasas por igual
- Bajaron entradas hab, subió HM
- Uso universal de guantes y bata evita 1 adquisición /336 díapaciente
- 4 entradas por hora (96/día) >
 300.000 encuentros protegidos para evitar una transmisión >500.000 para evitar una infección

Uso universal de guantes y batas no disminuyó MOMR

Harris JAMA 2013

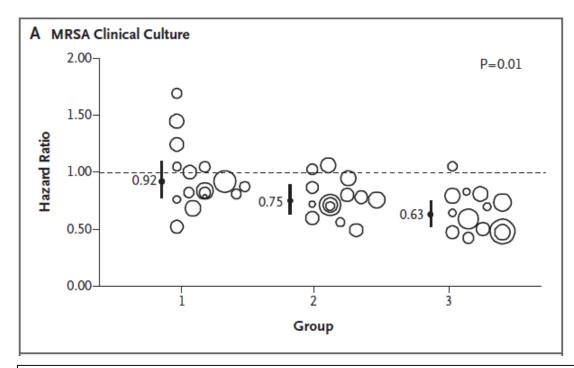
ORIGINAL ARTICLE

Intervention to Reduce Transmission of Resistant Bacteria in Intensive Care

- •RCT
- •10 UCI
- •5400 ingresos
- •Intervención: AS+PC si positivos+ uso universal de guantes para el resto de pacientes
- •Control: AS por fx de riesgo +PC si postivos+ PE para el resto de pacientes

Bajo cumplimiento No hay diferencias

Huskin NEJM 2011


The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 13, 2013

VOL. 368 NO. 24

Targeted versus Universal Decolonization to Prevent ICU Infection

- •74 UCI
- •74.000 pacientes
- •10% de los incluidos tenían ha de SARM previo
- •G1 screening + isolation
- •G2: G1+decolinzación
- •G3 decolonización universal+ precauciones de contacto
- •1 BSI SARM por cada 99 decolonizados

Descolonizar es más eficaz que aislar selectivamente

Huang NEJM 2013

Effect of Daily Chlorhexidine Bathing on Hospital-Acquired Infection

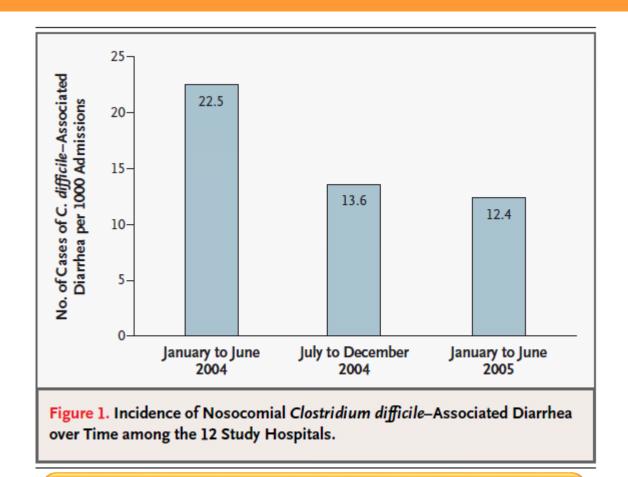
Variable	Intervention Period	Control Period	P Value
No. of admissions	3970	3842	0.32
Total days of care	24,902	24,983	0.85
Central-catheter use (days)	13,425	13,049	0.14
Mean length of stay (days)	6.4	6.4	0.53
MRSA prevalence (%)	13.8	12.8	0.14
VRE prevalence (%)	16.3	15.1	0.24
MDDO			
No. of infections Incidence rate (no./1000 patient-days)	127 5.10	165 6.60	0.03
VRE acquisition No. of infections Incidence rate (no./1000 patient-days)	80 3.21	107 4.28	0.05
MRSA acquisition No. of infections Incidence rate (no./1000 patient-days)	47 1.89	58 2.32	0.29
Hospital-acquired bloodstream infection No. of infections Incidence rate (no./1000 patient-days)	119 4.78	165 6.60	0.007
Primary bloodstream infection No. of infections Incidence rate (no./1000 patient-days)	90 3.61	131 5.24	0.006
Central-catheter—associated bloodstream infection No. of infections Incidence rate (no./1000 catheter-days)	21 1.55	43 3.30	0.004
Secondary bloodstream infection			
No. of infections	29	34	0.45
Incidence rate (no./1000 patient-days)	1.20	1.40	

- •9 UCI i TMO
- •Higiene diaria con clorhexidina.
- •Se mantuvieron las precauciones de contacto

Disminuyó la colonización y las bacteriemias

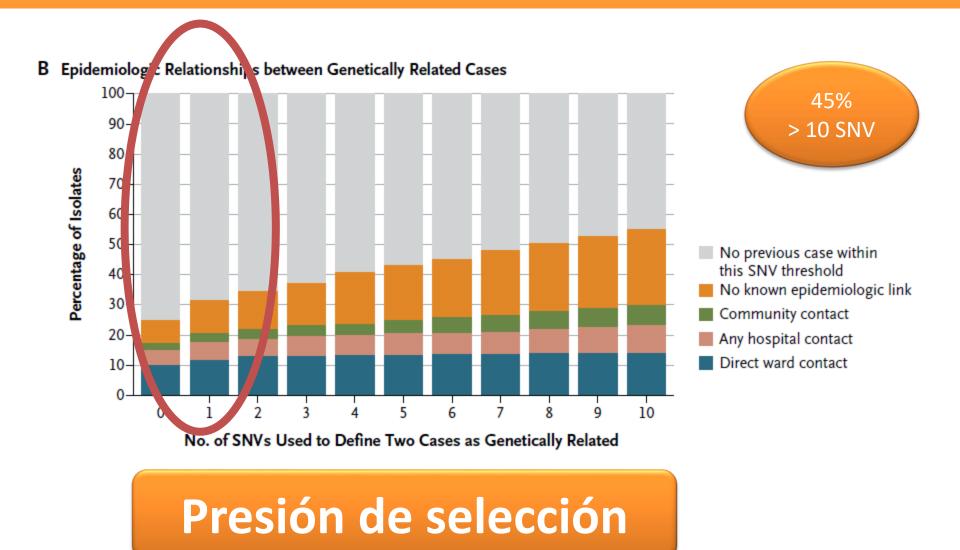
LIMPIEZA AMBIENTAL

AUTHOR	INTERVENTION	OUTCOME
Falk ICHE 2000	Training of housekeepers Increased cleaning hours Check list	Outbreak ended
Hayden CID 2006	Training of housekeepers Monitoring Feedback	Decreased VRE acquisition
Rampling JHI 2001	Increased cleaning hours	Decreased MRSA acquisition
Dancer BMC Med 2009	One additional cleaner for high- touch surfaces	Decreased MRSA acquisition
Datta Arch Intern Med 2011	Feedback using fluorescent markers	Decreased VRE acquisition
Grabasch JHI 2012	Training of housekeepers Monitoring Feedback	Decreased VRE acquisition and VRE bactereremia

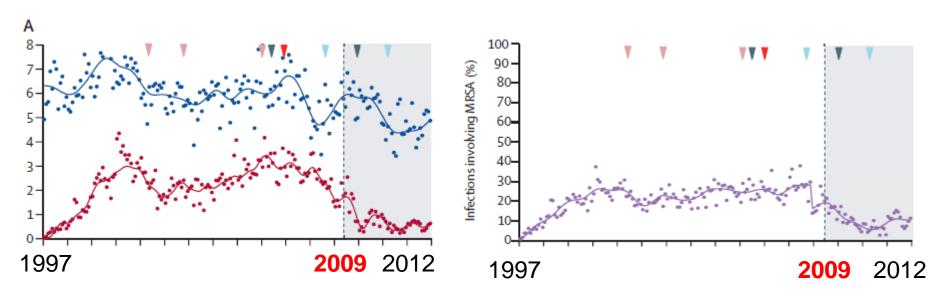

Donskey. Am J Infect Contr 2013

TRANSMISIBILIDAD

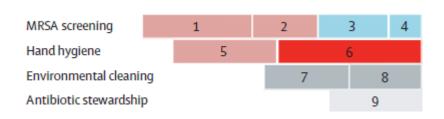
Distribució Kpblee Nosocomial per unitats, <u>mostres clíniques 2105</u> ▲: colonització, ■: infecció (amb clona)


Plantas Hospit.	Gener	<u>Febrer</u>	<u>Març</u>	<u>Abril</u>	Maig	Juny	<u>Juliol</u>	<u>Agost</u>	<u>Setembr</u>	<u>Octub</u>	<u>Novemb</u>	decemb
15							6	▲ 6 ■38				
12					■54 ■52		3 7					
11			5 6		▲39					3 7		
10					= 23	3 9		2				
9									▲52			
8									52 41			
UFI/5												
semi					2 3			■ 41 ▲ 6				
UCI					▲ 57				3 9			
UCIES Nosocomial per ingrés anterior 4 setmanes								■ pte	■36 ■50	51 50 37		

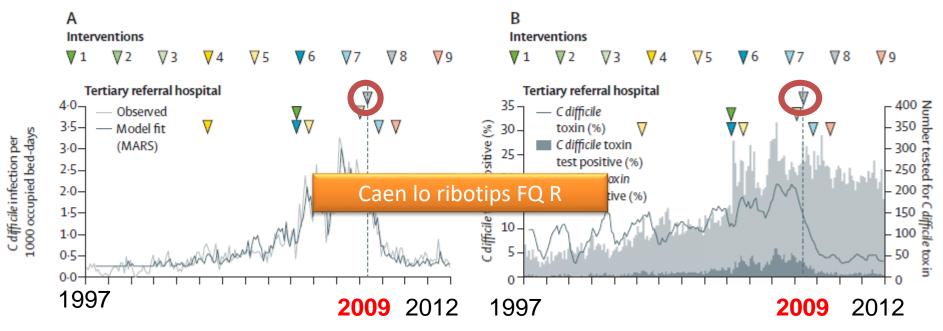
LA HISTÒRIA DEL CLOSTRIDIUM A NORDAMÈRICA 2005



Transmisión cruzada


LA HISTÒRIA DEL CLOSTRIDIUM A EUROPA 2013

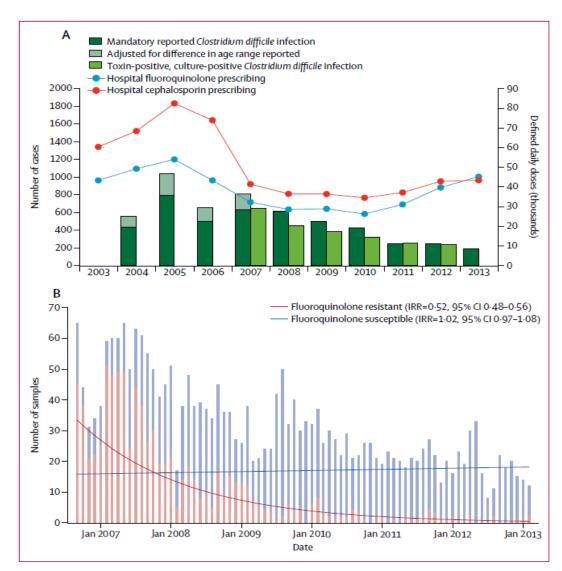
SARM: PRECAUCIONES DE CONTACTO O PROA?


AZUL: Hospital terciari A ROJO: Hospital terciari B LILA: Hospital comunitario

- NW Sctoland
- ☐ 4C ASP 2009
- ☐ Caída del 47% del 4C als hospitals
- ☐ Caída del 50% de la incidencia SARM. Coincidencia temporal

Lawes et al. Lancet Infect Dis 2015

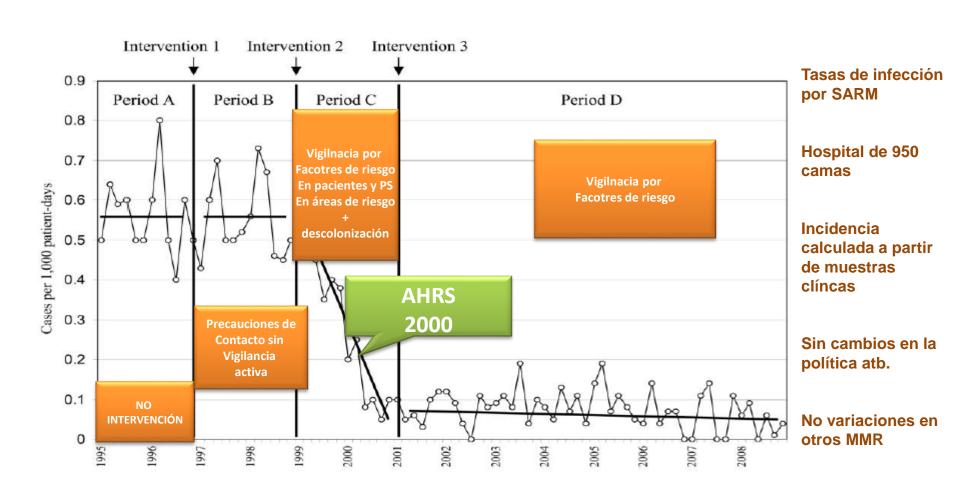
CLOSTRIDIUM: CONTROL DE INFECCIÓN O PROA?



- 1. mandatory surveillance for individuals older than 65 years in hospitals
- and in the community
- 3. and in 15–64 year olds in all settings
- 4. introduction of alcohol-based hand sanitiser
- 5. and national hand-hygiene campaign
- 6. auditing of environmental cleaning standards in hospital
- 7. and Hospital Environment Inspectorate inspections
- 8. antibiotic stewardship (4C: cephalosporines, co-amox-clav, clindamycin, FQ)
- 9. and persuasive hospital prescribing intervention to reduce use of proton-pump inhibitors

Lawes et al. Lancet Infect Dis 2017

CLOSTRIDIUM: CONTROL D'INFECCIÓ O PROA


- ☐ ST resistents a FQ apareixen abans de l'epidèmia (027, 001, 017, 106)
- □ todas las medidas (la resticció de FQ) consiguen la caíd sólo de los R a FQ
- ☐ Las medidas de CI no impactan sobre la incidencia.
- ☐ No hay evidencia de transmisión (agrupación local) de los ST sensibles a FQ: hay una fuente externa.
- ■No caen los casos secundarios (ST similares) FQ sensibles

Dingle et al. Lancet Infect Dis 2017

A FAVOR

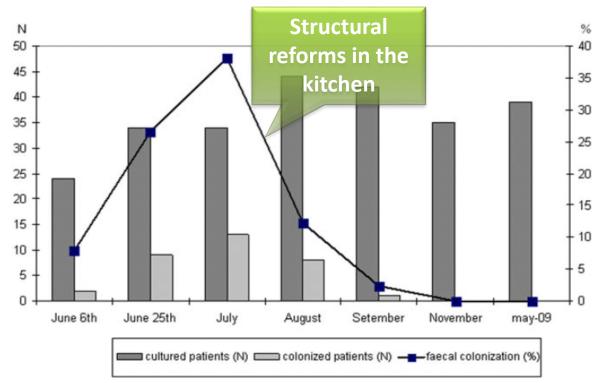
VERTICAL INTERVENTIONS IN ENDEMIC SETTINGS

Rodriguez-Baño et al. ICHE 2010

Factors Leading to Transmission Risk of Acinetobacter baumannii

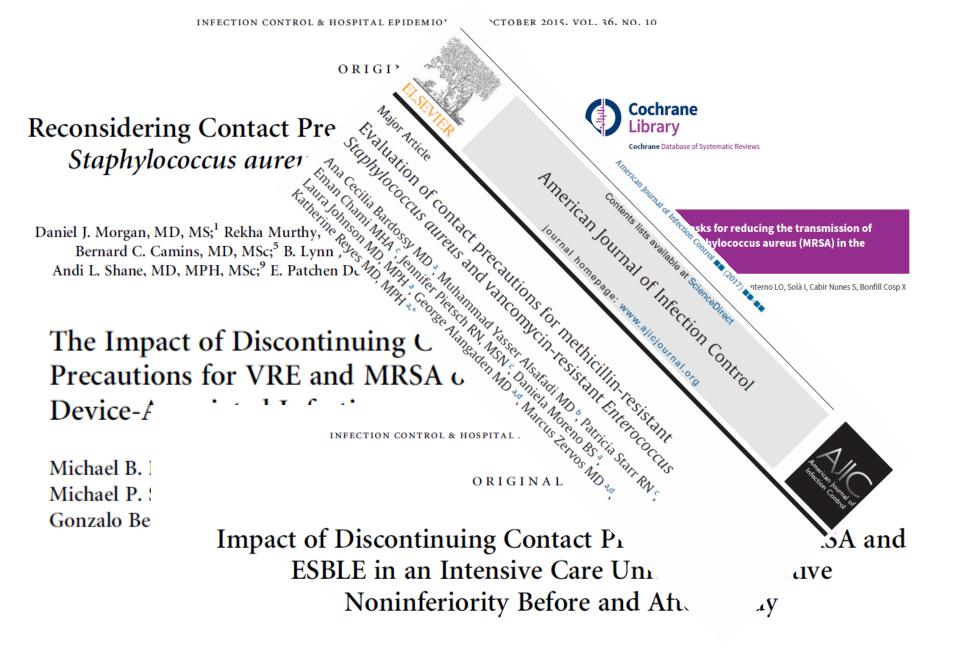
Kerri A. Thom, MD, MS¹; Clare Rock, MD, MS²; Sarah S. Jackson, MPH¹; J. Kristie Johnson, PhD¹; Arjun Srinivasan, MD³; Laurence S. Magder, PhD¹; Mary-Claire Roghmann, MD, MS^{1,4}; Robert A. Bonomo, MD⁵; Anthony D. Harris, MD, MPH¹

Observations of HCW-nations interactions


	Observations of HCW-pat	ient interactions		
Variable	Transmission risk iden- tified: <i>Acinetobacter</i> <i>baumannii</i> positive HCW cultures (n = 77; n [%])	No Transmission risk identified: <i>A. baumannii</i> negative HCW cultures (n = 177; n [%])	OR (95% CI)	P
HCW interaction with environment (interaction IV medication pump, ventilator, and floor])	0	not shown [sink, bedside t	table, vital sign monitor	r, door handle,
Bedrail	39 (51)	62 (35)	2.83 (1.36-5.88)	< 0.01
Supply cart	34 (44)	44 (25)	2.57 (0.40-3.28)	< 0.01
HCW interaction with nationt (interactions th	at word nonsignificant are r	ant shown [abtaining vital s	ians urinany catheter	drainago

HCW interaction with patient (interactions that were nonsignificant are not shown [obtaining vital signs, urinary catheter drainage, administering parenteral medications, IV medication pump])^a

Physical examination	32 (42)	53 (30)	1.89 (0.97, 3.67)	0.061
Wound dressing	13 (17)	6 (3)	8.81 (2.50, 31.05)	< 0.01
Bathing hygiene	9 (12)	10 (6)	3.78 (1.12, 12.78)	0.032
Endotracheal tube or tracheotomy site	25 (32)	24 (14)	4.40 (1.92, 10.08)	< 0.01


OUTBREAKS CONTROL: TRYING TO AVOID ENDEMICITY

Foodborne Nosocomial Outbreak of SHV1 and CTX-M-15-producing *Klebsiella pneumoniae*: Epidemiology and Control

- (1) Elevada prevalencia de colonización fecal
- (2) Rápida diseminación
- (3) Colonizción precoz
- (4) 14% de los trabajadores de la cocina eran portadores asintomáticos

EN CONTRA

REVISIONES SISTEMÁTICAS

	N	A favor	En contra
Cohen JHI 2015	6 PC aisladas (4/6 miden cumplimiento 21-87%)	1/6 demuestra caídas en la transmisión (A. baumannii)	No se mojan: baja calidad, bajo cumplimiento
Morgan ICHE 2015	48, brotes, bundle 11 CP SARM (+AS) 5 CP VRE (+AS)	6/11 SARM resultado positivo 5/5 VRE resultado negativo	No hay evidencia suficiente en la literatura para sustentar las PC Aportan encuesta de hospitales, 30 no usan PC
Kullar AMJIC 2016	6 estudios, RCT, bundle	PC disminuyen la transmisión en brotes si hay alto cumplimiento No correlación con caída de la tasa de infecciones	No impacto en contexto de endemia Efectos adversos asociados

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Major Article

Discontinuing contact precautions for multidrug-resistant organisms: A systematic literature review and meta-analysis

Alexandre R. Marra MD, MS ^{a,b,*}, Michael B. Edmond MD, MPH, MPA ^{a,c}, Marin L. Schweizer PhD ^{d,e}, Grace W. Ryan MPH ^f, Daniel J. Diekema MD, MS ^{a,c,g}

Study or Subgroup	log[Risk Ratio]	SE	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Almyroudis 2016	-0.13	0.105	44.8%	0.88 [0.71, 1.08]	<u> </u>
Edmond 2015	-0.26	0.323	4.7%	0.77 [0.41, 1.45]	
Gandra 2014	-0.31	1.55	0.2%	0.73 [0.04, 15.30]	
Lemieux 2016	-0.53	0.462	2.3%	0.59 [0.24, 1.46]	
Martin 2016	-0.19	0.121	33.8%	0.83 [0.65, 1.05]	
Rupp 2016	-0.34	0.187	14.1%	0.71 [0.49, 1.03]	
Total (95% CI)			100.0%	0.82 [0.72, 0.94]	•
Heterogeneity: Tau² =		0.01 0.1 1 10 100			
Test for overall effect:	Z= 2.78 (P = 0.00	Favor Stopping CP Favor CP			

- Abandonar las PC no se ha correlacionado con un aumento de la incidencia de infección por SARM o VRE
- Esto puede ser debido a bajo cumplimiento o a baja transmisibilidad
- Efectos adversos: menor tiempo, retraso en la atención, retraso en el ingreso y traslados, alarga estancia media, disconfort psicológico,

CONCLUSIONES

CONCLUSIONES

- Parece seguro abandonar PC para MOMR determinados en situaciones de:
 - endemia estable,
 - con condiciones estructurales adecuadas,
 - buen cumplimento de la HM,
 - baño de clorexidina +/- descolonización,
 - limpieza ambiental,
 - y UN EQUIPO CONTROL INFECCIÓN experto y atento
- Focalizar los esfuerzos del ECI hacia estrategias preventivas horizontales (dirigidas a síndromes) puede ser más eficaz.
- Estrategia "traje a medida" teniendo en cuenta la epidemiología local y atentos a los cambios vs estrategia "café para todos".
- Si mantenemos las PC deberíamos monitorizar el cumplimiento.

American Journal of Infection Control

journal homepage: www.ajicjournal.org

State of the science review

Degowning the controversies of contact precautions for methicillin-resistant *Staphylococcus aureus*: A review

Ravina Kullar PharmD, MPH ^{a,*}, Angela Vassallo MPH, MS, CIC ^b, Sarah Turkel MPH, MS, MT(ASCP) ^b, Teena Chopra MD, MPH ^c, Keith S. Kaye MD, MPH ^c, Sorabh Dhar MD ^{d,**}

- Revisión literatura respecto a PC en SARM, hospitales de agudos, no brote, 1996-2015
- Eficacia de PC, calidad del cuidado, efectos adversos.
- PC aisladamente no disminuye la transmisibilidad de MOMR (si cuando es un bundle)
- Impacto en los resultados de la tasa de cumplimiento con PC y con HM
- Algunos estudios muestran una caída del 20% del número de veces que los PS entran en la habitación del paciente con PC